Thursday, September 20, 2018

Switch vs Router vs Modem: What Is the Difference?

Ethernet switch, router and modem look strikingly similar if only judging by their appearance. However, they each play different roles and are deployed for various purposes in a network. So what is the key difference of switch vs router vs modem? How switch vs router vs modem each functions in a network. We would address these issues in this article by explaining switch vs router vs modem from scratch.
switch vs router vs modem

Switch vs Router vs Modem: All Are Major Network Devices

We’ll start from exploring what exactly network switch, router and modem are and the roles of switch vs router vs modem in a network.
modem router switch diagram
What Is a Modem?
A modem is often provided by your ISP (Internet Service Provider) which enables a network access to the internet. In some cases ISPs provide "hybrid" modem/router combination, this device might be power efficient to some extent, it actually limits your network potentials. So suggestion is to request a standalone modem whenever possible to increase the available resources on the network.
What Is a Router?
When connecting more than one device to a modem, a router is generally required. A router acts as the "traffic director" of a network. It takes information provided by the modem and routes it to the devices attached to the modem, then the router creates Network Address Translated ( NAT) internal private IP address to the connected devices so they can be accessed. Devices like computers, game consoles and etc can be connected to a router wirelessly or through network cables. Some advanced features of a router includes built-in firewall to help protect the network from unwanted traffic.
What Is a Switch in Networking?
A switch (such as a 10GbE switch or Gigabit PoE switch) is used to provide additional ports, expanding the capability of the router. A network switch learns the association between the MAC addresses of connected devices and its switched ports. A switch only sends data to where it needs to go, thus reducing the amount of data on the network, thereby increasing the overall performance of the connected devices while improving security. Often connected to a router, a switch will not provide routing capability and should not be connected directly to the modem unless a DHCP server is present elsewhere on the network.

Switch vs Router vs Modem: Similarities and Differences

As standard components in Ethernet networks, switch vs router vs modem bears many similarities, but there are also some key characteristics to set them apart.
Similarities:
  • Switch vs router vs modem are all small plastic/metal box-shaped electronic device
  • They all allow computers to connect to it for the purpose of enabling communication among them via Internet Protocol
  • They all have some physical ports on the front or back of them, which provide the connection points for computers, a connection for electric power, and LED lights to display working status.
Differences:
Router vs Modem
Routers work at network layer 3 of the OSI model, and it deals with IP addresses. A router is specifically used to join networks together and routes traffic between them. When used at home, your router connect the internal local network to your ISP’s network. And it can be connected to your modem (provided by ISP) on one end and to a switch on the other end (local network). Usually, the Internet port on a router will connect to your modem and the rest of the ports are for switches. A modem has a single coaxial port for the cable connection from your ISP and a single Ethernet port to link the Internet port on your router. Modem is used to connect your ISP using phone line (for DSL), cable connection or fiber (ONT).
Router vs Switch
Like we’ve mentioned, a router works at layer 3 of the OSI model, thereby it allows you to connect multiple computers to each other and also allows them to share a single Internet connection. A switch, however, works at layer 2 of the OSI model (there are also some layer 3 switches that have routing capacities), which connects one point to another in a network temporarily by turning it on and off as necessary. Note that a switch only allows you to connect multiple computers into a local network. The following chart illustrates other differences concerning router vs switch.
Router
Switch
Function
Directs data in a network. Passes data between home computers, and between computers and the modem.
Allow connections to multiple devices, manage ports, manage VLAN security settings
Layer
Network Layer (Layer 3 devices)
Data Link Layer. Network switches operate at Layer 2 of the OSI model.
Data Transmission Form
Packet
Frame (L2 Switch) Frame & Packet (L3 switch)
Used
LAN, MAN, WAN
LAN
Transmission Mode
Full duplex
Half/Full duplex
Broadcast Domain
In Router, every port has its own Broadcast domain.
Switch has one broadcast domain [unless VLAN implemented]
Speed
1-100 Mbps (Wireless); 100 Mbps - 1 Gbps (Wired)
10/100 Mbps, 1 Gbps
Address used for data transmission
IP Address
MAC address
Used for
Connecting two or more networks
Connecting two or more nodes in the same network (L2) or different network (L3)
Faster
In a different network environment (MAN/ WAN), a router is faster than an L3 switch.
In a LAN environment, an L3 switch is faster than a router (built-in switching hardware)
Features
Firewall VPN Dynamic hadling of Bandwidth
Priority rt range On/Off setting of port VLAN Port mirroring

Switch vs Router vs Modem: What’s the Connection Sequence?

The simple rule for connecting switch, router and modem is like this: modem-router-switch (access point)-multiple clients. Put the switch behind a router so all devices connected to either the switch or the router can access the internet simultaneously, while placing the switch right after the modem is just as equal to not putting it - it will waste some of your hardware and cables since all your switch ports aside from the two going between the router and modem will be useless to you.
how to connect switch, router and modem

Conclusion

Here we’ve walked you through the basic concept of switch vs router vs modem, as well as the similarities and differences concerning router vs modem and router vs switch. Hope that has clear some of your confusions. For any further solution related to fiber switch or network router, reach us via sales@fs.com.
Source: http://www.cables-solutions.com/switch-vs-router-vs-modem-difference.html

Sunday, September 16, 2018

Server Rack Cable Management: What Is the Best Practice?

Data centers today consist of rows of server racks and network cabinets to support an abundance of data cables, power cords and network devices. Deliver proficient cable management within a confined and tightly-spaced server rack is quite difficult. However, cable management is no longer a nightmare if you follow the right guide and work with some test-and-tried tools. Here we’d like to offer useful advice for server rack cable management, and recommend some efficient and reliable management tools.
server rack cable management

Server Rack Cable Management Benefits

Server rack cable management, if not being handled properly, could bring you a succession of problems – it would result in cable damage and failure, which directly lead to data transmission errors, performance issues and system downtime. On the contrary, successful cable management in server rack can benefit you in every aspects, including:
Improved system performance: server rack cable management demands to separate power and data cables within the racks, which greatly decrease the chance for crosstalk and interference.
Enhanced availability: Effective server rack cable management allows easier access to cables and IT devices, yet to reduce human error.
Improved maintenance and serviceability: Effective rack cable management also ensures easier and safer access to individual components.
Increased cooling efficiency: let hot exhaust air out from the back, server rack cable management keeps cables organized and out of critical airflow paths.
Improved scalability: cable management in server rack simplifies moves, adds, and changes, making it easier to integrate additional racks and components for future growth.

Server Rack Cable Management Guide

Since we’ve made clear the benefits of server rack cable management, here is a step-to-step guide for you to further explain how to do it correctly:
  • Plan appropriately. It greatly contributes to smooth server rack management process. Consulting a professional cabling contractor can always be beneficial.
  • Determine the routes for power and data cables. Determine if they enter from the top or bottom of the server rack. Then plan the routes to separate power and data cables, and copper data cables and fiber.
  • Identify cables. Use colored cables as well as cable labers to ensure easier cable identification.
  • Route and retain cables. Cables must be protected at points where they might encounter sharp edges or heated areas. Cable ties and cable managers can be used to this end.
  • Secure cables. Cables and connectors should be secured to prevent excessive movement and to provide strain relief of critical points.
  • Avoid thermal issues. Ensure the airflow path is rather important, since restrained airflow can cause temperatures rise that would shorten devices’ expected lifespan.
  • Document and maintain organization. Documenting the complete infrastructure including diagrams, cable types, patching information, and cable counts is important.

Efficient Tools for Server Rack Cable Management

Here are top five management tools that can facilitate cable management in server racks:
1. Horizontal Cable Manager
Horizontal cable managers are excellent for any kind of cable – fiber, coax, patch cables, copper wiring and more to ensure that your cables are well-organized and protected. Horizontal cable managers come with rack-mountable 1U or 2U design, and some of them are built with finger duct and D-rings for easier finger access in server rack.
2. Vertical Cable Manager
Vertical cable manager work very well to organize and hold cables to ensure proper air flow, avoiding overheating in complex server rack environment. They’re also great for installations where you need to save space or need to make more room in the future to expand your network.
3. Cable Hangers and Trays
If you need to organize cabling within server racks, cable hangers can come in handy. Cable trays are excellent for running wires from one place to another and can be mounted on the floor or overhead in the ceiling.
4. Copper Patch Panels
For data and telecommunications networks a copper patch panel is essential. A patch panel is a board with a number of different ports to connect network wiring. Ethernet patch panels are available in a variety of different configurations depending on your cable types and needs: there are Cat5e patch panel, Cat6 patch panel and Cat6a patch panel, each with different port counts such as 24-port patch panel, 48-port patch panel, etc. Copper patch panel is also great for consolidating cables so that your server rack looks neat and organized.
5. Fiber Optic Patch Panels
Similar to data patch panels, fiber patch panels are designed specifically for fiber optic cables. Also known as termination units they can accommodate connectors, patch cables and more. Network technicians can easily connect cable fibers through cross connection, test the cable patch panel, and connect it to other network equipment. Grouping by the connector type, there are single mode and multimode LC/SC/MTP fiber patch panels with various port counts. You can also choose blank patch panel to mix and match your fiber and copper cabling.

Conclusion

Effective server rack management helps to improve physical appearance, cable traceability, airflow, cooling efficiency and troubleshooting time while eliminates the chance for human error. Hope our guide on server rack cable management would help solve your problem. FS.COM provide tailored cable management solutions for our customers, as well as management tools like cable manager, patch panelcable organizer and cable tie. If you need any help, please contact us at sales@fs.com.

Source: http://www.cables-solutions.com/server-rack-cable-management-practice.html

Friday, September 7, 2018

GUI vs CLI: Which for Managing Network Switch?

Network switch is the major building block of many business networks, as they connect multiple PCs, printers, access points, servers, and other hardware to make your business up and running. Switches enables you to send and receive information and access shared resources in a smooth, efficient and highly secure way. It happens at some points we need to make settings or adjustments on switches to perform certain function, like configuring VLAN or check status of switch ports. So how to get the configuration access to a network switch? Does GUI or CLI work better for you? What’s the difference between GUI vs CLI? We’ll address these issues and guide you to manage switch via GUI and CLI.
gui vs cli for configuring network switch

What Is GUI (Graphical User Interface)?

GUI is short for Graphical User Interface – it uses graphics like windows, scrollbars, buttons, etc. to allow users to communicate with the data switch or GUI operating system. It facilitate users, especially novice users in an intuitive and easy-to-learn way. GUI access need recognition and good exploratory analysis and graphics, which is more suitable for users who requires no access to advanced tasks.
what is command line cli

What Is CLI (Command Line Interface)?

CLI stands for Command Line Interface, which allows users to write commands in a terminal or console window to communicate with an operating system. CLI acts as the medium between operators and the network switch: Users have to type command to perform a task. CLI is more accurate than GUI, but it has a very steep learning curve. CLI is appropriate for users who uses it in a regular basis, or for the costly computing where input precision is the priority.
what is gui graphical user interface

GUI vs CLI: What Is the Difference?

GUI vs CLI, both as the mainstream interface for accessing network switch, differs in the following aspects:
Ease of Use: CLI enable users to type manual command in order to perform the desired task whereas in GUI users provided visuals to communicate with the data switch. So the beginners will pick up a GUI much faster than a CLI.
Control: With a GUI, there’s control over files and the operating system – but advanced tasks may still need CLI. While CLI enables all the control over file system and operating system, making tasks simple.
Speed: In GUI, using the mouse and the keyboard to control is slower than using the command line. With CLI, the operator simply use the keyboard and may need to execute only few commands to complete the task.
Hacking: In terms of hacking, all the vulnerability exploits are done from command line. All the remote access and file manipulation are done from the command line.
Scripting: CLI excels in this field since it allows you to create a script that contains few lines of command and it will do the work for you.
Here we use the chart to summarize GUI vs CLI differences.
BASIS FOR COMPARISON
CLI
GUI
Basic
Command line interface enables a user to communicate with the system through commands.
Graphical User interface permits a user to interact with the system by using graphics which includes images, icons, etc.
Device used
Keyboard
Mouse and keyboard
Ease of performing tasks
Hard to perform an operation and require expertise.
Easy to perform tasks and does not require expertise.
Precision
High
Low
Flexibility
Intransigent
More flexible
Memory consumption
Low
High
Appearance
Can't be changed
Custom changes can be employed
Speed
Fast
Slow
Integration and extensibility
Scope of potential improvements
Bounded

GUI vs CLI: How to Use Them to Manage Network Switch?

CLI and GUI are different kinds of user interfaces with their own merits and drawbacks. It is important to understand where each one excels so you can pick the right tool. Using the defining features of two different tools provides the best of both worlds. The following video, using FS S5850-32S2Q 10GbE switch as an example, offers a complete guide on how to use command line and GUI to access a network switch, through which you may figure out which one fits better for you.

Conclusion

In all, the GUI provides a higher degree of multitasking and more efficiency, whereas CLI offers more control, precision and repeatability. The decision on choosing GUI vs CLI to configure the network switch should better based on user requirements. FS.COM offers a comprehensive product line of network switches, including Gigabit Ethernet switch, Gigabit PoE switch, etc. If you are seeking network switch configuration or management solutions, feel free to contact us at sales@fs.com.

Source: http://www.cables-solutions.com/gui-vs-cli-manage-network-switch.html